Informative Features for Comparing Distributions

Wittawat Jitkrittum

Max Planck Institute for Intelligent Systems
wittawat.com

DALI 2019, San Sebastian, Spain 4 September 2019

They Play a Big Part in My PhD Journey

- **Arthur Gretton** (Gatsby Unit, UCL)
- Zoltán Szabó (École Polytechnique)
- Massimiliano Pontil (Istituto Italiano di Tecnologia & UCL)
- Nando de Freitas (University of Oxford & DeepMind)
- Peter Dayan (Max Planck Institute for Biological Cybernetics)
- Members of Gatsby Unit, UCL
- Kenji Fukumizu (Institute of Statistical Mathematics)
- Mijung Park (Max Planck Institute for Intelligent Systems)
- Dino Sejdinovic (University of Oxford)
- Nicolas Heess (DeepMind)
- Ali Eslami (DeepMind)
- Balaji Lakshminarayanan (DeepMind)
- Maneesh Sahani (Gatsby Unit, UCL)
- Kacper Chwialkowski (Voleon)
- Wenkai Xu (Gatsby Unit, UCL)
- My family and friends

2/13

- At Gatsby Unit, University College London.
 - Supervisor: Arthur Gretton.
- Thesis: Kernel-Based Distribution Features for Statistical Tests and Bayesian Inference
 - Study algorithms to extract interpretable "features" from distributions
- Focus: scalable algorithms $\mathcal{O}(n)$ + theoretical justification

- 1
- 2
- 3 Dependence measure
- 4 Amortized message passing with expectation propagation

- At Gatsby Unit, University College London.
 - Supervisor: Arthur Gretton.
- <u>Thesis</u>: Kernel-Based Distribution Features for Statistical Tests and Bayesian Inference
 - Study algorithms to extract interpretable "features" from distributions
- Focus: scalable algorithms $\mathcal{O}(n)$ + theoretical justification

- 1
- 2
- 3 Dependence measure
- 4 Amortized message passing with expectation propagation

- At Gatsby Unit, University College London.
 - Supervisor: Arthur Gretton.
- <u>Thesis</u>: Kernel-Based Distribution Features for Statistical Tests and Bayesian Inference
 - Study algorithms to extract interpretable "features" from distributions
- Focus: scalable algorithms $\mathcal{O}(n)$ + theoretical justification

- 1 Two-sample testing
- 2 Model criticism
- 3 Dependence measure
- 4 Amortized message passing with expectation propagation

- At Gatsby Unit, University College London.
 - Supervisor: Arthur Gretton.
- <u>Thesis</u>: Kernel-Based Distribution Features for Statistical Tests and Bayesian Inference
 - Study algorithms to extract interpretable "features" from distributions
- Focus: scalable algorithms $\mathcal{O}(n)$ + theoretical justification

- 1 Two-sample testing \leftarrow (this talk)
- 2 Goodness-of-fit testing \leftarrow (this talk)
- 3 Dependence measure
- 4 Amortized message passing with expectation propagation

- Nonparametric.
- 2 Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 3 Interpretable. Tell where the model is wrong.

- Nonparametric.
- 2 Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 3 Interpretable. Tell where the model is wrong

- Nonparametric.
- 2 Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 3 Interpretable. Tell where the model is wrong.

- Nonparametric.
- 2 Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 3 Interpretable. Tell where the model is wrong.

- Robbery event coordinates (samples from q).
- Goal: Model spatial density.

A candidate model

p = Mixture of 2 Gaussians.

Is p a good model?

Score surface (black = large mismatch)

★ = optimized v. No robbery in Lake Michigan.

Sharp data boundary. Not follow Gaussian tails.

Proposal: The Unnormalized Mean Embeddings Statistic

[Chwialkowski et al., 2015, Jitkrittum et al., 2016]

Proposal: The Unnormalized Mean Embeddings Statistic

[Chwialkowski et al., 2015, Jitkrittum et al., 2016]

Proposal: The Unnormalized Mean Embeddings Statistic

[Chwialkowski et al., 2015, Jitkrittum et al., 2016]

■ Given J optimized test locations $V := \{\mathbf{v}_j\}_{j=1}^J = \{ \bigstar, \dots, \bigstar \},$

$$extstyle{UME}^2(P,\,Q) = rac{1}{J} \sum_{j=1}^J ext{witness}^2(\mathbf{v}_j).$$

■ Can be estimated in $\mathcal{O}(Jn)$.

■ Propose: Find test location(s) \mathbf{v} which maximize the probability of detecting differences (test power) between q and p.

- Propose: Find test location(s) \mathbf{v} which maximize the probability of detecting differences (test power) between \mathbf{q} and \mathbf{p} .
- Show that $arg max_v score(v) \implies arg max_v test power$.

- Propose: Find test location(s) \mathbf{v} which maximize the probability of detecting differences (test power) between q and p.
- Show that $arg max_v score(v) \implies arg max_v test power$.
- \blacksquare score(\mathbf{v}) = $\frac{\text{witness}^2(\mathbf{v})}{\text{uncertainty}(\mathbf{v})}$

$$\operatorname{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{y} \sim q}[\quad k_{\mathbf{v}}(\mathbf{y}) \quad] - \mathbb{E}_{\mathbf{x} \sim p}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad]$$

- Propose: Find test location(s) \mathbf{v} which maximize the probability of detecting differences (test power) between q and p.
- Show that $arg max_v score(v) \implies arg max_v test power$.

- Propose: Find test location(s) \mathbf{v} which maximize the probability of detecting differences (test power) between q and p.
- Show that $arg max_v score(v) \implies arg max_v test power$.
- \blacksquare score(\mathbf{v}) = $\frac{\text{witness}^2(\mathbf{v})}{\text{uncertainty}(\mathbf{v})}$

- Propose: Find test location(s) \mathbf{v} which maximize the probability of detecting differences (test power) between q and p.
- Show that $arg max_v score(v) \implies arg max_v test power$.
- \blacksquare score(\mathbf{v}) = $\frac{\text{witness}^2(\mathbf{v})}{\text{uncertainty}(\mathbf{v})}$

score: 0.008

- Propose: Find test location(s) \mathbf{v} which maximize the probability of detecting differences (test power) between q and p.
- Show that $arg max_v score(v) \implies arg max_v test power$.
- lacksquare score $(\mathbf{v}) = \frac{\text{witness}^2(\mathbf{v})}{\text{uncertainty}(\mathbf{v})}$

score: 1.6

$$\operatorname{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{y} \sim q}[extstyle \mathbf{v}] - \mathbb{E}_{\mathbf{x} \sim p}[extstyle \mathbf{v}]$$

- Propose: Find test location(s) \mathbf{v} which maximize the probability of detecting differences (test power) between q and p.
- Show that $arg max_v score(v) \implies arg max_v test power$.
- \blacksquare score $(\mathbf{v}) = \frac{\text{witness}^2(\mathbf{v})}{\text{uncertainty}(\mathbf{v})}$

score: 13

$$ext{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{y} \sim q}[extstyle \mathbf{v}] - \mathbb{E}_{\mathbf{x} \sim p}[extstyle \mathbf{v}]$$

- Propose: Find test location(s) \mathbf{v} which maximize the probability of detecting differences (test power) between q and p.
- Show that $arg max_v score(v) \implies arg max_v test power$.
- \blacksquare score $(\mathbf{v}) = \frac{\text{witness}^2(\mathbf{v})}{\text{uncertainty}(\mathbf{v})}$

score: 25

Papers on Bayesian inference

Papers on deep learning

$$Y = \{$$
, $\}$, $\}$, $\} \sim q$

- NeurIPS papers (1988-2015)
- Sample size n = 216.
- Random 2000 nouns (dimensions). TF-IDF representation.

Learned test location \star (a new document):

infer, Bayes, Monte Carlo, adaptor, motif, haplotype, ECG, covariance, Boltzmann

$$(\text{Stein}) \; \text{witness}(\textcolor{red}{\mathbf{v}}) = \mathbb{E}_{\mathbf{y} \sim q}[\qquad T_p k_{\textcolor{red}{\mathbf{v}}}(\mathbf{y}) \qquad] - \mathbb{E}_{\textcolor{red}{\mathbf{x}} \sim p}[\qquad T_p k_{\textcolor{red}{\mathbf{v}}}(\textcolor{red}{\mathbf{x}}) \qquad]$$

$$(\mathrm{Stein}) \ \mathrm{witness}(\textcolor{red}{\mathbf{v}}) = \mathbb{E}_{\mathbf{y} \sim q}[\, T_p \, \boxed{\hspace{1cm}} - \mathbb{E}_{\mathbf{x} \sim p}[\, T_p \, \boxed{\hspace{1cm}}$$

$$(\mathrm{Stein}) \ \mathrm{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{y} \sim q}[\qquad \qquad] - \mathbb{E}_{\mathbf{x} \sim p}[$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$.

$$(\mathrm{Stein}) \ \mathrm{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{y} \sim q}[\qquad \qquad] - \mathbb{E}_{\mathbf{x} \sim p}[$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$.

$$(\mathrm{Stein}) \ \mathrm{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{y} \sim q}[$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$.

$$(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{y} \sim q}[\qquad T_p k_{\mathbf{v}}(\mathbf{y}) \qquad]$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$.

$$(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{y} \sim q}[\qquad T_p k_{\mathbf{v}}(\mathbf{y}) \qquad]$$

Idea: Define T_p such that $\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0$, for any \mathbf{v} .

Proposal: Good v should have high

$$score(\mathbf{v}) = \frac{Stein Witness^2(\mathbf{v})}{uncertainty(\mathbf{v})}.$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$.

$$(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{y} \sim q}[\qquad T_p k_{\mathbf{v}}(\mathbf{y}) \qquad]$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$.

$$(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{y} \sim q}[\qquad T_p k_{\mathbf{v}}(\mathbf{y}) \qquad]$$

Idea: Define T_p such that $\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0$, for any \mathbf{v} .

■ score(v) can be estimated in linear-time.

Recall Stein witness(\mathbf{v}) = $\mathbb{E}_{\mathbf{y} \sim q}(T_p k_{\mathbf{v}})(\mathbf{y}) - \mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x})$

Recall Stein witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{y} \sim q}(T_p k_{\mathbf{v}})(\mathbf{y}) - \mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x})$

$$(T_p k_{\mathbf{v}})(\mathbf{x}) = rac{1}{oldsymbol{p}(\mathbf{x})} rac{d}{d\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) oldsymbol{p}(\mathbf{x})].$$

Then,
$$\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\text{Recall Stein witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{y} \sim q}(T_p k_{\mathbf{v}})(\mathbf{y}) - \mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x})$$

$$(T_p k_{\mathbf{v}})(\mathbf{x}) = \frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\text{Recall Stein witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{y} \sim q}(T_p k_{\mathbf{v}})(\mathbf{y}) - \mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x})$$

$$(T_p k_{\mathbf{v}})(\mathbf{x}) = \frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{x} \sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{x}) \right] = \int_{-\infty}^{\infty} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right] p(\mathbf{x}) d\mathbf{x}$$

$$= \int_{-\infty}^{\infty} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] d\mathbf{x}$$

$$= [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]_{\mathbf{x} = -\infty}^{\mathbf{x} = \infty}$$

$$= 0$$

(assume $\lim_{|\mathbf{x}| \to \infty} k(\mathbf{v}, \mathbf{x}) p(\mathbf{x})$)

Conclusions

Proposed new tests for two-sample and goodness-of-fit testing:

- 1 Nonparametric
- Linear-time
- Interpretable with

Conclusions

Proposed new tests for two-sample and goodness-of-fit testing:

- 1 Nonparametric
- 2 Linear-time
- 3 Interpretable with 💢

NeurIPS 2019 Tutorial

Interpretable Comparison of Distributions and Models Wittawat Jitkrittum, Dougal Sutherland, Arthur Gretton

Questions?

Thank you

$${
m UME}^2(P,\,Q) = rac{1}{J} \sum_{j=1}^J (\mu_P({f v}_j) - \mu_Q({f v}_j))^2.$$

Proposition 1 (Chwialkowski et al., 2015, Jitkrittum et al., 2016).

Assume

- 1 Kernel k is real analytic, integrable, and characteristic,
- 2 V is drawn from η , a distribution with a density e.g., standard normal.

- Key: Evaluating witness² is enough to detect the difference (in theory).
- Runtime complexity: $\mathcal{O}(Jn)$. J is small e.g., 10

$${\sf UME}^2(P,Q) = rac{1}{J} \sum_{j=1}^J (\mu_P({f v}_j) - \mu_Q({f v}_j))^2.$$

Proposition 1 (Chwialkowski et al., 2015, Jitkrittum et al., 2016).

Assume

- 1 Kernel k is real analytic, integrable, and characteristic,
- 2 V is drawn from η , a distribution with a density e.g., standard normal.

- Key: Evaluating witness² is enough to detect the difference (in theory).
- Runtime complexity: $\mathcal{O}(Jn)$. J is small e.g., 10

$${\sf UME}^2(P,Q) = rac{1}{J} \sum_{j=1}^J (\mu_P({f v}_j) - \mu_Q({f v}_j))^2.$$

Proposition 1 (Chwialkowski et al., 2015, Jitkrittum et al., 2016).

Assume

- 1 Kernel k is real analytic, integrable, and characteristic,
- 2 V is drawn from η , a distribution with a density e.g., standard normal.

- Key: Evaluating witness² is enough to detect the difference (in theory).
- Runtime complexity: $\mathcal{O}(Jn)$. J is small e.g., 10

$${\sf UME}^2(P,Q) = rac{1}{J} \sum_{j=1}^J (\mu_P({f v}_j) - \mu_Q({f v}_j))^2.$$

Proposition 1 (Chwialkowski et al., 2015, Jitkrittum et al., 2016).

Assume

- 1 Kernel k is real analytic, integrable, and characteristic,
- 2 V is drawn from η , a distribution with a density e.g., standard normal.

- **Key**: Evaluating witness² is enough to detect the difference (in theory).
- Runtime complexity: $\mathcal{O}(Jn)$. J is small e.g., 10.

- 35 females and 35 males (Lundqvist et al., 1998).
- 48 × 34 = 1632 dimensions. Pixel features.
- n = 201.

- Test power comparable to the state-of-the-art MMD test.
- Informative features: differences at the nose, and smile lines.

- Test power comparable to the state-of-the-art MMD test
- Informative features: differences at the nose, and smile lines

- Test power comparable to the state-of-the-art MMD test.
- Informative features: differences at the nose, and smile lines

- Test power comparable to the state-of-the-art MMD test.
- Informative features: differences at the nose, and smile lines

- Test power comparable to the state-of-the-art MMD test.
- Informative features: differences at the nose, and smile lines.

- Test power comparable to the state-of-the-art MMD test.
- Informative features: differences at the nose, and smile lines.

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some test location $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$ext{FSIC}^2(X,Y) = ext{cov}^2_{(\mathbf{x},\mathbf{y})\sim P_{xy}}\left[k(\mathbf{x},\mathbf{v}),l(\mathbf{y},\mathbf{w})
ight].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some test location $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$ext{FSIC}^2(X,Y) = ext{cov}^2_{(\mathbf{x},\mathbf{y})\sim P_{xy}}\left[k(\mathbf{x},\mathbf{v}),l(\mathbf{y},\mathbf{w})
ight].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some test location $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$ext{FSIC}^2(X, Y) = ext{cov}^2_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}) \right]$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some test location $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X,\,Y) = \mathrm{cov}^2_{(\mathbf{x},\mathbf{y})\sim P_{xy}}\left[k(\mathbf{x},\mathbf{v}),\,l(\mathbf{y},\mathbf{w})\right].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some test location $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X,Y) = \mathrm{cov}^2_{(\mathbf{x},\mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x},\mathbf{v}), l(\mathbf{y},\mathbf{w}) \right].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some test location $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$FSIC^{2}(X, Y) = cov_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}}^{2} [k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w})].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some test location $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X,\,Y) = \mathrm{cov}^2_{(\mathbf{x},\mathbf{y})\sim P_{xy}}\left[k(\mathbf{x},\mathbf{v}),\,l(\mathbf{y},\mathbf{w})\right].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some test location $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$ext{FSIC}^2(X, Y) = \operatorname{cov}^2_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}) \right].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some test location $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$ext{FSIC}^2(X, Y) = \operatorname{cov}^2_{(\mathbf{x}, \mathbf{y}) \sim P_{xy}} \left[k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}) \right].$$

- 1 Pick 2 positive definite kernels: k for X, and l for Y.
 - Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|^2}{2\sigma_x^2}\right)$.
- 2 Pick some test location $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$
 - 3. Transform $(\mathbf{x}, \mathbf{y}) \mapsto (k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w}))$ then measure covariance $\mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R} \times \mathbb{R}$

$$\mathrm{FSIC}^2(X,\,Y) = \mathrm{cov}^2_{(\mathbf{x},\mathbf{y})\sim P_{xy}}\left[k(\mathbf{x},\mathbf{v}),\,l(\mathbf{y},\mathbf{w})
ight].$$

$$score(\mathbf{v}) = \frac{Stein Witness^2(\mathbf{v})}{uncertainty(\mathbf{v})}.$$

$$score(\textcolor{red}{\mathbf{v}}) = \frac{Stein\ Witness^2(\textcolor{red}{\mathbf{v}})}{uncertainty(\textcolor{red}{\mathbf{v}})}.$$

$$score(\mathbf{v}) = \frac{Stein\ Witness^2(\mathbf{v})}{uncertainty(\mathbf{v})}.$$

$$score(\mathbf{v}) = \frac{Stein\ Witness^2(\mathbf{v})}{uncertainty(\mathbf{v})}.$$

$$score(\mathbf{v}) = \frac{Stein\ Witness^2(\mathbf{v})}{uncertainty(\mathbf{v})}.$$

$$score(\mathbf{v}) = \frac{Stein\ Witness^2(\mathbf{v})}{uncertainty(\mathbf{v})}.$$

$$score(\mathbf{v}) = \frac{Stein\ Witness^2(\mathbf{v})}{uncertainty(\mathbf{v})}.$$

$$score(\textcolor{red}{\mathbf{v}}) = \frac{Stein\,Witness^2(\textcolor{red}{\mathbf{v}})}{uncertainty(\textcolor{red}{\mathbf{v}})}.$$

■ Stein witness function: $g(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right].$

■ Stein witness function: $g(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_v(\mathbf{x}) p(\mathbf{x})] \right]$.

■ Stein witness function: $g(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_v(\mathbf{x}) p(\mathbf{x})] \right]$.

■ Stein witness function: $g(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right].$

■ FSSD statistic: Evaluate g^2 at J test locations $V = \{\mathbf{v}_1, \dots, \mathbf{v}_J\}$.

$$ext{FSSD}^2 = rac{1}{dJ} \sum_{j=1}^J \|\mathbf{g}(\mathbf{v}_j)\|_2^2.$$

FSSD is a Discrepancy Measure

■ $FSSD^2 = \frac{1}{dJ} \sum_{j=1}^{J} ||g(\mathbf{v}_j)||_2^2$.

Theorem 1 (FSSD is a discrepancy measure).

Main conditions:

- 1 (Nice kernel) Kernel k is C_0 -universal, and real analytic e.g., Gaussian kernel.
- 2 (Vanishing boundary) $\lim_{\|\mathbf{x}\|\to\infty} p(\mathbf{x})k_{\mathbf{v}}(\mathbf{x}) = \mathbf{0}$.
- 3 (Avoid "blind spots") Locations $\mathbf{v}_1, \dots, \mathbf{v}_J \sim \eta$ which has a density.

Then, for any $J \geq 1$, η -almost surely,

$$FSSD^2 = 0 \iff \mathbf{p} = \mathbf{q}.$$

Summary: Evaluating the witness at random locations is sufficient to detect the discrepancy between p, q.

$$\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$$

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = rac{1}{p(\mathbf{y})} rac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v}) p(\mathbf{y})].$$

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y} \sim p} \left[\left(\left. T_p k_{\mathbf{v}} \right) \! \left(\mathbf{y} \right) \right]$$

Recall witness
$$(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y} \sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight] = \int_{-\infty}^{\infty} \left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight] p(\mathbf{y}) \mathrm{d}\mathbf{y}$$

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y} \sim p}\left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight] = \int_{-\infty}^{\infty} \left[rac{1}{p(\mathbf{y})} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]
ight] p(\mathbf{y}) \, \mathrm{d}\mathbf{y}$$

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y} \sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{y}) \right] = \int_{-\infty}^{\infty} \left[\frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] \right] p(\mathbf{y}) d\mathbf{y}$$

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$egin{aligned} \mathbb{E}_{\mathbf{y} \sim p}\left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight] &= \int_{-\infty}^{\infty} \left[rac{1}{p(\mathbf{y})} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]
ight] p(\mathbf{y}) \, \mathrm{d}\mathbf{y} \ &= \int_{-\infty}^{\infty} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] \, \mathrm{d}\mathbf{y} \end{aligned}$$

Recall witness
$$(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v}) p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$egin{aligned} \mathbb{E}_{\mathbf{y} \sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight] &= \int_{-\infty}^{\infty} \left[rac{1}{p(\mathbf{y})} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]
ight] p(\mathbf{y}) \, \mathrm{d}\mathbf{y} \ &= \int_{-\infty}^{\infty} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] \, \mathrm{d}\mathbf{y} \ &= [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]_{\mathbf{y} = -\infty}^{\mathbf{y} = \infty} \end{aligned}$$

Recall witness
$$(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0$$
.

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y} \sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{y}) \right] = \int_{-\infty}^{\infty} \left[\frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] \right] p(\mathbf{y}) d\mathbf{y}$$

$$= \int_{-\infty}^{\infty} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] d\mathbf{y}$$

$$= [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]_{\mathbf{y} = -\infty}^{\mathbf{y} = \infty}$$

$$= 0$$

(assume
$$\lim_{|\mathbf{y}| \to \infty} k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})$$
)

- Bahadur slope \cong rate of p-value \to 0 under H_1 as $n \to \infty$.
- Measure a test's sensitivity to the departure from H_0 .

$$H_0$$
: $\theta = 0$
 H_1 : $\theta \neq 0$

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0 [Bahadur, 1960].
- $c(\theta)$ higher \Longrightarrow more sensitive. Good.

Bahadur slope

$$c(heta) := -2 \min_{n o \infty} rac{\log \left(1 - F(T_n)
ight)}{n}$$

where $F(t) = \text{CDF of } T_n \text{ under } H_0$.

■ Bahadur efficiency = ratio of slopes of two tests

- Bahadur slope \cong rate of p-value \to 0 under H_1 as $n \to \infty$.
- Measure a test's sensitivity to the departure from H_0 .

$$H_0$$
: $\theta = \mathbf{0}$,

$$H_1$$
: $\theta \neq \mathbf{0}$.

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0 [Bahadur, 1960].
- $\mathbf{c}(\theta) \text{ higher} \implies \text{more sensitive. Good.}$

Bahadur slope

$$c(heta) := -2 \min_{n o \infty} rac{\log \left(1 - F(T_n)
ight)}{n}$$

where F(t) = CDF of T_n under H_0 .

■ Bahadur efficiency = ratio of slopes of two tests.

- Bahadur slope \cong rate of p-value \to 0 under H_1 as $n \to \infty$.
- Measure a test's sensitivity to the departure from H_0 .

$$H_0$$
: $\theta = \mathbf{0}$,

$$H_1$$
: $\theta \neq \mathbf{0}$.

- Typically pval_n $\approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and $c(\mathbf{0}) = 0$ [Bahadur, 1960].
- $c(\theta)$ higher \implies more sensitive. Good.

Bahadur slope

$$c(heta) := -2 \mathop{ ext{plim}}_{n o \infty} rac{\log \left(1 - F(T_n)
ight)}{n}$$

where F(t) = CDF of T_n under H_0

■ Bahadur efficiency = ratio of slopes of two tests.

- Bahadur slope \cong rate of p-value \to 0 under H_1 as $n \to \infty$.
- Measure a test's sensitivity to the departure from H_0 .

$$H_0$$
: $\theta = \mathbf{0}$,

$$H_1$$
: $\theta \neq \mathbf{0}$.

- Typically pval_n $\approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and $c(\mathbf{0}) = 0$ [Bahadur, 1960].
- $c(\theta)$ higher \implies more sensitive. Good.

Bahadur slope

$$c(heta) := -2 \min_{n o \infty} rac{\log \left(1 - F(T_n)
ight)}{n},$$

where $F(t) = \text{CDF of } T_n \text{ under } H_0$.

■ Bahadur efficiency = ratio of slopes of two tests.

Gaussian Mean Shift Problem

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J=1 location for $n \widehat{FSSD^2}$. Gaussian kernel (bandwidth = σ_k^2)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)^2}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}.$$

■ For LKS, Gaussian kernel (bandwidth = κ^2)

$$c^{(\mathrm{LKS})}(\mu_q,\kappa^2) = \frac{\left(\kappa^2\right)^{5/2} \left(\kappa^2 + 4\right)^{5/2} \mu_q^4}{2\left(\kappa^2 + 2\right) \left(\kappa^8 + 8\kappa^6 + 21\kappa^4 + 20\kappa^2 + 12\right)}$$

Theorem 2 (FSSD is at least two times more efficient).

Fix $\sigma_k^2=1$ for $n \overline{\mathsf{FSSD}}^2$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2>0$, we have Bahadur efficiency

$$rac{c^{(ext{FSSD})}(\mu_q, v, \sigma_k^2)}{c^{(ext{LKS})}(\mu_\sigma, \kappa^2)} > 2.$$

Gaussian Mean Shift Problem

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J=1 location for $n\widetilde{\text{FSSD}}^2$. Gaussian kernel (bandwidth = σ_k^2)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)^2}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}.$$

■ For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\text{LKS})}(\mu_q, \kappa^2) = \frac{\left(\kappa^2\right)^{5/2} \left(\kappa^2 + 4\right)^{5/2} \mu_q^4}{2\left(\kappa^2 + 2\right) \left(\kappa^8 + 8\kappa^6 + 21\kappa^4 + 20\kappa^2 + 12\right)}.$$

Theorem 2 (FSSD is at least two times more efficient)

Fix $\sigma_k^2=1$ for $n FSSD^2$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2>0$, we have Bahadur efficiency

$$rac{c^{(\mathrm{FSSD})}(\mu_q, v, \sigma_k^2)}{c^{(\mathrm{LKS})}(\mu_g, \kappa^2)} > 2.$$

Gaussian Mean Shift Problem

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J=1 location for $nFSSD^2$. Gaussian kernel (bandwidth = σ_k^2)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)^2}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}.$$

■ For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\text{LKS})}(\mu_q, \kappa^2) = \frac{\left(\kappa^2\right)^{5/2} \left(\kappa^2 + 4\right)^{5/2} \mu_q^4}{2\left(\kappa^2 + 2\right) \left(\kappa^8 + 8\kappa^6 + 21\kappa^4 + 20\kappa^2 + 12\right)}.$$

Theorem 2 (FSSD is at least two times more efficient).

Fix $\sigma_k^2 = 1$ for $n\widehat{\text{FSSD}}^2$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2 > 0$, we have Bahadur efficiency

$$rac{c^{(ext{FSSD})}(\mu_q,v,\sigma_k^2)}{c^{(ext{LKS})}(\mu_q,\kappa^2)} > 2.$$

Bahadur Slopes of FSSD and LKS

Theorem 3.

The Bahadur slope of $n\widehat{FSSD^2}$ is

$$c^{(\mathrm{FSSD})} := \mathrm{FSSD}^2/\omega_1$$

where ω_1 is the maximum eigenvalue of $\Sigma_p := \text{cov}_{\mathbf{x} \sim p}[\tau(\mathbf{x})]$. The Bahadur slope of the linear-time kernel Stein (LKS) statistic $\sqrt{n} \widehat{S}_l^2$ is

$$c^{(ext{LKS})} = rac{1}{2} rac{\left[\mathbb{E}_q h_p(\mathbf{x}, \mathbf{x}')
ight]^2}{\mathbb{E}_p\left[h_p^2(\mathbf{x}, \mathbf{x}')
ight]},$$

where h_p is the U-statistic kernel of the KSD statistic.

Illustration: Optimization Objective

- Consider J = 1 location.
- Training objective $\frac{\widehat{\text{FSSD}^2}(\mathbf{v})}{\widehat{\sigma_{H_1}}(\mathbf{v})}$ (gray), p in wireframe, $\{\mathbf{x}_i\}_{i=1}^n \sim q$ in purple, \bigstar = best \mathbf{v} .

$$p=\mathcal{N}\left(\mathbf{0},\left(egin{array}{cc}1&0\0&1\end{array}
ight)
ight) ext{ vs. }q=\mathcal{N}\left(\mathbf{0},\left(egin{array}{cc}2&0\0&1\end{array}
ight)
ight).$$

Illustration: Optimization Objective

- Consider J = 1 location.
- Training objective $\frac{\widehat{\text{FSSD}^2}(\mathbf{v})}{\widehat{\sigma_{H_1}}(\mathbf{v})}$ (gray), p in wireframe, $\{\mathbf{x}_i\}_{i=1}^n \sim q$ in purple, $\bigstar = \text{best } \mathbf{v}$.

 $p = \mathcal{N}(0, \mathbf{I})$ vs. q = Laplace with same mean & variance.

References I

Bahadur, R. R. (1960).

Stochastic comparison of tests.

The Annals of Mathematical Statistics, 31(2):276–295.