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About This Talk

m Zoltan's talk 3 weeks ago:
Wasserstein Propagation for Semi-Supervised Learning
m The term "label propagation" is used often in semi-supervised
learning.
m What is its origin 7 Seems to be ... (I think)

Learning with Local and Global Consistency. NIPS 2003
([Zhou et al., 2003]).
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Transduction

[ labeled points u unlabeled points

/—/T /—/l%
m Input: {z;,y;}ioy and {2},

Infer just {y;}.%, |, not the mapping f : X — Y.
Assume | < u.

n=I0l+4+u

yi € {1,...C} (classification task)

m An easier problem than induction (i.e., learning f).
m Label propagation does just that.

m Application: document categorization
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What Is Label Propagation ?

4w
i=[+1"

4w

sl (large u) to find {y;

m Use {z;,y;}\_, (small I) and {z;
m = go from left plot to right plot

® class 1
# class 2
*_unl abel ed|

m Idea: Each point spreads label information to its neighbors

m Neighborhood defined by similarity matrix W.



Set Up

m For each z;, define
Y= (0(y; = 1),...,0(y; = ©)) € {0, 1}1%C,

If z; is unlabeled i.e., : > 1+ 1, then Y; = 01 4.

m For each z;, label propagation finds a nonnegative scoring vector

F; e RYXC.
F; = (fi,..., fic) = class membership scores
Fy Y,
m Label propagation finds F' = ; given Y = :
Fiyy Yitu

m Y is fixed.



Label Propagation Algorithm

Form an affinity (similarity) matrix W € R"*". Set W;; = 0.
Normalize W by
S =D 2wp-1/2

where D is diagonal with D;; = Zj Wij.

Iterate
Ft+1) < aSF(t)+ (1 —-a)Y

where a € (0,1) and F'(0) =Y.

Label z; with
Yi = argmax Fiy

where F* := lim;_, o, F(t).



Affinity Matrix Construction
Various choices from ([Belkin and Niyogi, 2003])

m c-neighborhoods:

Wij = 1if || — x;]* < e

May lead to several connected components
m k nearest neighbors (kNN)

Wij = 1if z; € kNN(z;) or 2; € kNN(z;)

m Gaussian kernel: W;; = exp (—||z; — z;||?/20?)
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Image from [Zhu, 2007]



Notes on Label Propagation

m W captures the intrinsic structure of the data.
m Set W;; = 0 to avoid self-reinforcement.

m « trade-offs information from neighbors and Y
Ft+1) < aSF(t)+(1—-a)Y

High o = trust neighbors (o = 0.99 in the paper)
m Analytic update

F*=(1—a)(Iyxn—aS) 'Y

(independent of F'(0))



Label Propagation on 2circs Data

m Affinity matrix W is constructed with Gaussian kernel with small
width
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After 1 lteration




After 10 Iterations




After 40 lterations




After 80 lterations (converged)
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Regularization Framework

m [ =argming Q(F) (loss function) where

> w

=1 j=1

+NZ I1F; — v;)*

zz ]j

smoothness constraint fitting constraint

m Implication: A good F' should

not change too much between nearby points (smoothness)
not change too much from the initial label assignment Y
(fitting constraint)

m Trade-off captured by p (regularization parameter).



Solve Q(F)

m Rewrite Q(F),

QUF) = u(FT(I-8F)+

L [t (FPT) =260 (FYT) 40 (YY)

m Differentiate w.r.t. F
29
OF
F* = (uI—29)"'Y

= 2(I-S8)F+u(F-Y)=0

m Recall previously F* = (1 —a) (I —aS)"'Y.

m Equivalent solution with o< 1/a.



Why Normalize W 7
S =D Pwp-1/?

m Eigenvalues of S in [—1,1]. Necessary for the convergence.
m Eigen-decompose S =VCV .
A
—N—
C = VD Viwp-y
vTDY2p-1pl/2y
Since A=! = V" D'/2 (V orthogonal),
C = A'D'wA
=D7'W = ACA™!

m C contains eigenvalues of D'V,
m D~ 'W is a stochastic matrix. Rows sum to 1.
Eigenvalues |Cj;| < 1.



Convergence

F(t+1) « aSF(t)

Take the limit
F* =

B —

aSB =
B—-—aSB =
=B =

+(1-a)Y

t—1
F(t) = (aS)"'Y +(1-a)) (aS
1=0

t—o00

0

I+aS+ (aS)* +

aS + (aS)? +
I
(I—as8)™!

B

t—1

. . t—1 . i
lim F(t) = lim (a8)"1Y + (1 - a) lim Z(aS) Y

-+ (convergent series)

Substitute B back: F* = (1 —a) (I — aS)™*
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Conclusions

m Transduction is a task to predict labels of the observed unlabeled
points.

m No mapping function f : X — Y is learned.
m Label propagation tries to generate smooth outputs w.r.t. W

m Analytic solution.



References |

@ Belkin, M. and Niyogi, P. (2003).
Laplacian eigenmaps for dimensionality reduction and data
representation.
Neural Computation, 15:1373-1396.

@ Belkin, M., Niyogi, P., and Sindhwani, V. (2005).
On manifold regularization.

@ Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and Schélkopf, B.
(2003).
Learning with local and global consistency.
In NIPS.

B Zhu, X. (2007).
Semi-supervised learning tutorial.




Learning Paradigms

Supervised learning

{(xs,y:)}_; = Infer the mapping f: X —» Y
Regression when Y € R. Classification when Y € {1,...C}.

Unsupervised learning

{z;}"_, = Find hidden structure in the data
In clustering, find y; € {1,...,C} (labels) such that {z;}; with the
same label are “similar”.

Semi-supervised learning

I of {zi,yi}\_; (labeled) and w of {z;}7_,,; (unlabeled)
= Infer the mapping f : X — Y (inductive).
n =1+ wu. Usually | < u.

m Reinforcement learning



Motivations for Semi-Supervised Learning

m Example task: web categorization

e x; = a web page

e 1y, = category

o Goal: learn f: web page — category
m Manual page annotation is time-consuming.
m Abundance of unlabeled sentences.

m Ideally, use both labeled and unlabeled data
to build a better learner.




Motivations for Semi-Supervised Learning

m Example task: natural language parsing ([Zhu, 2007]).

e x; = sentence
e y; = parse tree
e Goal: learn f :

Juim |1.it ll'llc bzllll_

sentence +— parse tree

m Manual parse tree annotation is
time-consuming.
m Abundance of unlabeled sentences.

m Ideally, use both labeled and unlabeled data
to build a better learner.



How can unlabeled data help 7

Example from [Belkin et al., 2005].

m 2 classes (C' = 2). 2 labeled points. {(x1,blue), (z2,red)}



How can unlabeled data help 7

Example from [Belkin et al., 2005].

m Best decision boundary



How can unlabeled data help 7

Example from [Belkin et al., 2005].
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m {(x1,blue), (z2,red)} and {z;}_; (in black). Same decision

boundary ?



How can unlabeled data help 7

Example from [Belkin et al., 2005].
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m So, unlabeled data can be helpful.

L]

L]
[ ]
e @
[ ]
L)
[ ]
[ ]
[ ]
[ ]
L]
L]
]
[ ]
[ ]



Label Propagation on 2spirals Data

m Affinity matrix W is constructed with 5-NN.
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After 1 lteration




After 10 Iterations




After 40 lterations




After 80 Iterations




After 100 lterations (converged)
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