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Overview

m Symmetric key cryptography uses same
secret key for encryption and decryption.
Need to agree in advance upon which

key to use.
Need a secure channel to exchange key.

Alice
m Public key cryptography uses one public Hello | _[p ' 1o
. . Alice! R Alice's
key for encryption and private key for private key
decryption. :
_ Public-key cryptography.
n available to anyone.

(image from Wikipedia)
m Private key known only to the owner

m Can use private key to encrypt as well.
Equivalent to a digital signature.
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RSA Cryptosystem

m Ron Rivest, Adi Shamir, and Leonard Adleman first published RSA
in 1977.
m Assume B wants to send a message m (integer) to A.
m A has key pair: (public key, private key) = (e, d) and pre-chosen n.
m RSA relies on
F(m,k) =mF mod n

B encrypts with public key e:
c=F(m,e) =m° mod n
A decrypts with private key d:

m = F(c,d) = ¢ modn

m = mod y = remainder of x/y. For example, 12 mod 5 = 2.
m Need to find e,d, n that work.
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Divisibility

m ged(z,y): greatest common divisor of x and y.

ged(8,12) =4
ged(5,9) =1

m An integer p > 1 is a prime iff its divisors are 1 and p.

Prime: 2,11,23
Not prime: 6,10

m Arbitrary integers x and y are said to be relatively prime or coprime
iff ged(x,y) = 1.

Examples: (5,9), (8,15)
Does not mean x and y are prime.
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Modular Arithmetic

m z mod n := remainder when x is divided by n e.g., 12 mod 5 = 2.

n is called modulus.

m z,y are congruent modulo n if (x mod n) = (y mod n), written
as

x =y (mod n)

Examples: 3 =5 (mod 2).

m (mod n) operator maps all integers into set
Zy={0,1,...,(n—1)}.

m Modular arithmetic performs arithmetic operations within confines
of Z,.
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Properties of Modular Arithmetic

(r+y) modn = [(x modn)+ (y modn) modn
(x—y) modn = [(x modn)—(y modn) modn
(rxy) modn = [(x modn)x (y modn) modn

m z is multiplicative inverse of y if x X y =1 (mod n). Denoted by
~1

T
Example: 3 x4 =1 (mod 11).
Not all integers have a multiplicative inverse.
271 does not exist under (mod 4) because 2 x y — 1 is not divisible
by 4.
Lemma

The multiplicative inverse of y (modulo n) exists iff y and n are
relatively prime.

6/13



Euler's Totient Function

Define Euler’s totient function ¢(n) :=
number of integers in {1,2,...,n — 1}
relatively prime to n.

m i.e., number of z < n such that

ged(z,n) =1
mo(1) =1
m For prime p, ¢(p) =p—1 ]
m For primes p and ¢, n

o(pg) = (p— 1)(g — 1) (image from Wikipedia)
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RSA Key Generation

Generate public key e, private key d, and n.

1 Large Prime Number Generation. Generate large primes p and
g. Can be done with Rabin-Miller primality test (probabilistic test).

2 Modulus. Set n = pq.

3 Totient. Compute ¢(n) = (p—1)(q —1).

4 Public key e. Pick a prime e in [3,$(n)) that is relatively prime to
o(n) ie., ged(e, p(n)) = 1.

5 Private key d. By the lemma, the multiplicative inverse of e exists

(modulo ¢(n)). Can be determined with the Extended Euclidean
Algorithm. Set it to d.

Observations

m We have ed =1 (mod ¢(n)) by design.
m Imply ed = k¢(n) + 1 for some positive integer k.
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Useful Theorems
For proving correctness of RSA,

Fermat's Little Theorem

If p is prime, for m relatively prime to p, it holds that m?~! =1
(mod p).

m Example: 2°71 =16 =1 (mod 5)

Chinese Remainder Theorem

Let p and ¢ be relatively prime. If a = m (mod p) and a = m (mod q),
then a =m (mod pq).

m Example: 22 =2 (mod 5) and 22 =2 (mod 4).
=22=2 (mod 5 -4).
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Known So Far

Fermat's Little Theorem

If p is prime, for m relatively prime to p, it holds that m?~! =1
(mod p).

Chinese Remainder Theorem

Let p and ¢ be relatively prime. If a = m (mod p) and a = m (mod q),
then a =m (mod pq).

Known
1 [(x mod p) x (y mod p)] mod p= (z xy) mod p
2 n=pq.
3 ¢(n)=(p-1)(¢—1)
4 ed=1 (mod ¢(n)) by design. So, ed = k¢(n) + 1 for some k.
5 Encrypt with public key e by ¢ = m® mod n.
6 Decrypt with private key d by m = ¢ mod n.
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RSA Algorithm and Correctness

m Encrypt with public key e by ¢ = m® mod n.
m Decrypt with private key d by m = ¢¢ mod n.

d

Proof of Correctness. Need to show m = ¢ mod n.

m Suffices to show m = ¢? (mod p) and m = ¢ (mod q). Then use

Chinese remainder theorem to get m = ¢? (mod n).
m ¢! (mod p) = (m® (mod n))? (mod p) = m
(mod p) = mFM+1 (mod p) = mFP-D=D+1 (mod p).

m (mod p) = k@@= (mod p)

m
= m- (mp_l)k(q_l) (mod p)
(modular arithmetic) = m - (m?~! (mod p))k(q_l) (mod p)
(Fermat’s little theorem) = m - (1)*Y (mod p)
= m (mod p) O
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Security

m Public: n, e (public key), ¢ (cipher text)
m Secret: p, ¢ (factors of n), ¢(n), d (private key)

Mathematical attacks:
1 Factor n into n = pgq.
2 Determine ¢(n) directly without n = pg. Can use it to find d = e~!
modulo ¢(n).
3 Determine d (private key) directly from n,e. As hard as (1).
Comments:
m Factoring n is considered fastest (still difficult). Used as measure of
RSA security.
m http://en.wikipedia.org/wiki/RSA_Factoring_Challenge
m For factorizing n = pgq, best published asymptotic running time is
the general number field sieve (GNFS) algorithm:
) (exp ((%413) 1/3 (log b)2/3)> for b-bit number.

(See Integer factorization, Wikipedia)
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More on RSA

m In 1994, Peter Shor showed that a quantum computer (exists ?)
would be able to factor n in polynomial time.

m As of 2010, the largest factored RSA number was 768 bits long (232
decimal digits).

State-of-the-art distributed implementation took around 1500 CPU
years.

m Practical RSA keys: 1024 to 2048 bits.

Practical uses

m For exchanging a symmetric key

m Digital signature. Encrypt a message with one's private key.
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Related Theorems

Euler's Theorem 1

For every = and n that are relatively prime, z¢(™) =1 (mod n).

Euler's Theorem 2

(n)+1 =

For every positive integers 2 and n, ¢ z (mod n)

Fermat's Little Theorem 2

Let = be a positive integer. If p is prime, then 2 = = (mod p)

m Example: 3° =243 =3 (mod 5)
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